M1.B

M2.A

M3. (a) Electrophile: e^{-}pair / lone pair acceptor or e^{-}deficient species or e^{-} seeking species (1)

For 'species' accept atom, molecule, ion
NOT '+'ion
NOT 'attracted to '- ' charge'
Addition: reaction which increases number of substituents or convert double bond to single bond or where two molecules form one molecule (1)
(b) (High) e^{-}dense or e^{-}rich $\mathrm{C}=\mathrm{C}$ or e^{-}rich π bond or $4 \mathrm{e}^{-}$between the $\mathrm{C}^{\prime} \mathrm{s}$ (1)

NOT just ' $C=C$ '
causes induced dipole in $\mathrm{Br}_{2}(1)$
Ignore refs to 'temporary'
can score M 2 from δ^{+} / δ^{-}on Br_{2} in (c) unless a contradicting error in (b)
(c) Mechanism:

Name of product: 1,2-dibromopropane (1)
(d) addition (1)

Not additional
-Not adarional
\square Not addional

M4. (a) M1 fermentation

M2 dehydration or elimination
(b) (i) yeast OR zymase OR an enzyme
(ii) concentrated sulphuric or phosphoric acid (penalise aqueous or dilute as a contradiction)
(c) (i) primary or 1°
(ii) sugar or glucose or ethanol is renewable OR ethanol does not contain sulphur-containing impurities OR ethanol produces less pollution or is less smoky or less CO/C
(the objective is a positive statement about ethanol)
(penalise the idea that ethanol is an infinite source or vague statements that ethanol has less impurities) (penalise the idea that ethanol produces no pollution)
(d) $\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$
(e) Addition
(ignore self or chain as a preface to "addition ")

M5.
(a) (i)

(1)
ignore Na^{+}unless covalently bonded
(ii)
 (1)
must be dipeptide, not polymer nor anhydride
allow -CONH- or -COHN-
allow zwitterion
(iii) hydrogen bonding (1)

QL
Allow with dipole-dipole or v derWaals, but not dipole-dipole etc alone
(b) (i) Type of polymerisation: addition(al) (1)

Repeating unit:

not multiples
allow n
(ii) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}(1) \mathrm{C}_{2} \mathrm{H}_{5}$
(iii)

M6.A

M7. (a) (i) moles of $\mathrm{C}_{2} \mathrm{~F}_{2}=\underline{0.40}$ mark independently from HC 1
moles of $\mathrm{HC} 1=\underline{0.80}$ not consequential
(ii)

$$
\mathrm{K}_{\mathrm{o}}=\frac{\left[\mathrm{C}_{2} \mathrm{~F}_{4}\right][\mathrm{HCl}]^{2}}{\left[\mathrm{CHClF}_{2}\right]^{2}}
$$

wrong K_{c} means they can only score for units in (iii) consequ on their K_{c}
(iii)

$$
K_{o}=\frac{(0.40 / 18.5)(0.8 / 18.5)^{2}}{(0.20 / 18.5)^{2}}
$$

$$
=0.35
$$

$\mathrm{mol} \mathrm{dm}^{-3}$
(b) (i) increase
(ii) decrease
(c) addition or radical

M8. (a) (i)

(Ignore n or brackets, but trailing bonds are essential)
(ii) Addition or radical
(b) (i) 2-aminobutanoic (acid)
(ii)

(c) (i) $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$
(ii)

(1,4-)butan(e)dioic (acid)
(allow succinic, but not dibutanoic nor butanedicarboxylic acid)
(iii) Can be hydrolysed / can react with acid or base or water / can react with nucleophiles

