M1.B

[1]

M3. (a) *Electrophile*: e- pair / lone pair acceptor or e- deficient species or e- seeking species (1)

For 'species' accept atom, molecule, ion NOT '+' ion NOT 'attracted to '- ' charge'

Addition: reaction which increases number of substituents or convert double bond to single bond or where two molecules form one molecule (1)

(b) (High) e^- dense or e^- rich C=C or e^- rich π bond or 4 e^- between the C's (1) NOT just 'C=C'

causes induced dipole in Br₂ (1)

Ignore refs to 'temporary' can score M2 from δ^* / δ^- on Br_2 in (c) unless a contradicting error in (b)

2

2

(c) *Mechanism:*

Name of product: 1,2-dibromopropane (1)

(d) addition (1)

Not additional

[10]

1

M4.		(a)	M1	fermentation	1
		M2	deh	ydration or elimination	1
	(b)	(i)	yea	st OR zymase OR an enzyme	1
		(ii)	<u>con</u>	<u>centrated</u> sulphuric or phosphoric acid (penalise aqueous or dilute as a contradiction)	1
	(c)	(i)	prin	nary or 1°	1
		(ii)	suga OR (OR (ar or glucose or ethanol is renewable ethanol does not contain sulphur-containing impurities ethanol produces <u>less</u> pollution or is <u>less</u> smoky or <u>less</u> CO/C (the objective is a positive statement about ethanol) (penalise the idea that ethanol is an infinite source or vague statements that ethanol has less impurities) (penalise the idea that ethanol produces no pollution)	
					1
	(d)	C₂H	$_{6} \rightarrow C_{2}$	$H_4 + H_2$	1

(e) Addition

(ignore self or chain as a preface to "addition ")

Repeating unit: not multiples allow n

(1)

- (ii) $CH_{3}CH=CHCH_{2}CH_{3}$ (1) $C_{2}H_{5}$
- (iii)

[8]

1

3

1

1

1

[7]

M7.	(a)	(i)	moles of $C_2F_2 = 0$.) <u>.40</u>	mark independently from HC1	1
		mole	es of HC1 = 0.80	not	consequential	

$$\mathsf{K}_{\mathsf{c}} = \frac{\left[\mathsf{C}_{2}\mathsf{F}_{4}\right]\left[\mathsf{HCI}\right]^{2}}{\left[\mathsf{CHCIF}_{2}\right]^{2}}$$

(ii)

wrong K_{\circ} means they can only score for units in (iii) consequ on their K_{\circ}

(iii)
$$K_{e} = \frac{(0.40/18.5)(0.8/18.5)^{2}}{(0.20/18.5)^{2}}$$

		= 0.35		
		mol dm-₃		
(b)	(i)	increase		
	(ii)	decrease		
(c)	add	ition or radical		

1

1

1

1

(ii) Addition or radical (b) (i) 2-aminobutanoic (acid) (ii) $H_{3}\dot{N} - CH_{2}CH_{3}$ $H_{3}\dot{N} - COOH$

(c)	(i)	$C_3H_4O_2$	1
	(ii)		
	но-	-С—СН ₂ СН ₂ —С—ОН 	
		0 0	1
		(1,4-)butan(e)dioic (acid) (allow succinic, but not dibutanoic nor butanedicarboxylic acid)	1
	(iii)	Can be hydrolysed / can react with acid or base or water / can react with nucleophiles	1